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ABSTRACT 

It is shown that every linear string of quantifiers can be replaced by a well- 
ordered sequence of quantifiers. 

In Henkin [1] an attempt was made to generalize first-order languages. One 

of  the directions was infinite languages, i.e. to add to the familiar logical opera- 

tions (conjunction, negation, existential quantification, etc.) infinite operations. 

The definition of the truth value of infinite conjunctions (or disjunctions) was 

straightforward: A{q~i: i e I }  is made true by a given assignment, iff each ~b 1 is 

made true by it. It is also intuitively clear what should be the meaning of an 

infinite homogeneous string of quantifiers (i.e. ( 3 x l . . . 3 x ~ . . . ) ~ b ) .  

The meaning of a well-ordered string of quantifiers is, perhaps, also not difficult 

to grasp. Things become more complicated if one considers arbitrary linearly- 

ordered strings of quantifiers. To make an expression of the form (..- Q , x , . . . ) ,  ~ v 

(D[... x , . . . ] ,  where U is linearly ordered and Q, ~ {V, 3}, clear, one uses Skolem 

functions. Let S =  { u ~ U : Q , = V }  and let T =  { u ~ U : Q , = 3 } ,  then the 

expression above is equivalent to the existence of functions f t ,  t ~ T, such that 

f t  has the set of arguments {x~: s ~ S  &s < t}, where < is the ordering of  U, 

such that qb(.., x~...ft(.., xs ) ' " )  holds for all values of xs, s ~ S. 

It  is interesting to find out whether, making use of arbitrary linearly ordered 

strings of quantifiers, adds to the expressive powers of the language. The problem 

was stated by Keisler in [2]. In this paper an answer is given. We show that 

* The results of this paper was part of the author's Master Thesis, which was submitted to the 
Hebrew University in August, 1967. The work was done under the guidance of Professor H. 
Gaifman, whom I thank for his kind guidance, and his help to clarify the exposition in this 
article. 
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well-ordered strings of quantifiers are sufficient, in the sense that other quanti- 

fications can be reduced to them. 

We will now state the problem and the result accurately. 

Given a string of quantifiers, 0 = ("" Q,,x,,...),, ~ v ,  where U is linearly ordered, 

define ulEu2 to mean that Q,, = Q,2 and that, for every u between ul and u2, 

Qu, = Q,. It is obvious that E is an equivalentce relation, and that U is splitted 

into non-overlapping blocks which are the equivalence classes. Let [u] be the 

equivalence class of u,  then, if u 1 < u2, vl c [ u l ] ,  v2 ~ [u2] and [u l ]  ~ [uz] ,  

then v t < v 2. Thus {[u]: u ~ U}, is linearly ordered in the obvious way. Its 

order type is denoted by 't~O'. 

We now will define a language L(2,/t, 7), where 2 and FL are infinite cardinals 

and ), is a set of linear order-types. 

The formulas of L(2,la,7) are obtained by the usual rules of formation of 

first-order formulas together with the following additional three clauses: 

I f  III < ~ and {Oi}i ~ , is a set of formulas, then A i ~ O ,  is a formula. 

I f  • is a formula and )7 is a sequence, whose length is less than/~,  of  individual 

variables, then 324 and V20 are formulas. 

I f  • is a formula and O = (... Q,x,,..-),,~ v is such that [ U [ < # and t,,Q e ~, 

then QR is a formula. 

The concept of  a model is the same as the usual one, and if M is a model and 

z is a mapping from the set of the individual variables into M,  then the concept 

of satisfaction, 'M ~ ,O' is defined as usual, with the following additional clauses: 

M~tAieiOi if M~,Oi, for all i ~ I .  M ~ , 3 2 0  if there is an assignment z 1 

which coincides with • on every variable not occurring in 2 ,  such that M ~ ,O,  a 

similar clause being made for ¥ 2 0 .  

M ~ 0 0  if, putting as before, T = { u : Q , = 3 } ,  S = {u = Q , = V } ,  there 

exists a family of functions, {ft: t e T},  such that ft is a function of the arguments 

x~, sE S and s < t, such that for every zl which coincides with z on every variable not 

occurring in Q, and which satisfies za(xt) = ft("" zl(x,)' . .)~<t,s ~ s, we have M_I~-,,O. 

Two formulas • and Lt' are equivalent, if, for every model M and every z, 

we have M ~ O  ..~ M ~ ,re. 

THEOREM 1. Let  2:1 = {qE7: r 1 is a well-ordering}.  I f  there is a cardinal  Z 

in ~ ,  such that I q[ < Z , f ° r  all rl E7 - ~1, and such that for  all  ~: < z we have 

2 ~ < MinQ.,~), then every f o r m u l a  in L().,#,7) is equivalent to a f o rmu la  in 

L(2, / t ,? l ) .  
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The proof  of  Theorem 1 is rather messy and will not be given here. Its main 

idea can be gotten from the proof  of  Theorem 2. 

THEOREM 2. Put,  as breore, 71 = {q~?:  ~/ is a wel l -ordering}.  I f  every tl 

in ? - ?t is o f  the f o r m  ~*, where ~* is the inverse o f  ct and  ~ is a wel l -ordering 

such that c~ < 2,  then every f o r m u l a  in L(2,/2,?) is equivalent  to a f o r m u l a  in 

L(2, It,?1). 

Proof. By induction on the formula. I t  is enough to show that if • is a formula 

of  L(2,/~,71) and if tpQ = ~*, where ~ < 2, then ~)(1) is equivalent to a formula 

of L(2,#,71).  The proof  is by induction on ~. I f  ~ = 0 the claim is trivial. I f  

0~ = 6 + 1 and the claim holds for 3, then it holds also for ~ since 0(I) is either 

equivalent to ~ ) ' ~  or to V£c~'~, where tpQ' = 6. The only difficult case is 

where a is a limit ordinal. In that cas~ if 0 = (... Q,,x, . . . ) ,  ~ v ,  th~-n U = Up<~[vp], 

where [vp] are the disjoint blocks on which we have the induced ordering 

• .. < [vp] < ... < [tq] < I-v0], such that Q,, = Q, . ,  for every tq ,Uz within the 

same block. For every 3 < ~ let U6 = [,.Ja<6[va] and let 0~ = ("" Q , x , . . . ) ,  ~ v , .  

Furthermore,  let S = {u ~ U: Q, = V}, T = {u~ U: Q, = 3}. From now on s 

will range over S and t over T. By our induction hypothesis, each formula O~tI) 

is equivalent to a formula of  L(2,/t, 7~). Put 

a,  = ( . . .  3x , . . . ) ,  

We claim that W is equivalent to 0 4 .  Since W is equivalent to a formula of  

L(2,12,?t),  the theorem follows from this claim. 

M ~ ,W iff there are functions gt, t e T, each gt having the arguments 

• .. x~. . . ,  s ~ S such that /~o< ,O~  holds with respect to every assignment z~ i n 

which rt(x~) = g,(-" vl(x~) ' - ' ) ,  and which coincides with ~ on the other variables. 

A~<~O~® holds for z 1 iff each 0~0 does. 

For  a fixed 6, the variables x . ,  u c Ua, are quantified in Qn(I), hence the saris- 

faction of Q~¢ is not affected if the assignment is changed in an arbitrary way 

provided that the change is only for the x , ,  u m Ua. 

Now M ~, ,0~¢ iff a family of  suitable Skolem functions exists. For every 

t ~ T n U~ the corresponding Skolem function is a function of those x, for which 

s c S ~ Ua and s < t; however, the functions would depend on the values which 

the assignment z 1 assigns to the variables x .  where u ~ U -  Un, for these are 

free in Q~¢. Hence, the satisfaction of tp is equivalent to the existence of  the 

following families of  functions: {g t } ,  ~ T, mentioned before, and {ha,,}0<,., ~ r o y ,  
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where each h~,t is a function of  the x , ,  where u ~ T -  Uj,  and of the x~, where 

s < t.  These functions should take care of every 0~q~, meaning that, for every 

fi < c~, ¢~ is satisfied with respect to every assignment of  values to the variables 

xu, u ~ U,  which is arrived by the following procedure (the values given to the 

other variables being those given by the original z): 

(I) the variables xs, s ~ S are assigned arbitrary values; 

(II) the value of each xt, where t E T -  U~ is to be determined by the values 

assigned in step (i) to the xs, s ~ S,  according to the function gt; 

(III) the values of the x~, s ~ S c~ U~, can now be changed in an arbitrary 

way; 

(IV) every x t ,  t ~ T n U6, is assigned a value which depends on the values 

of  the xu, u ~ U -  U6, which were assigned in (i) and (ii) and the values of the 

xs, s ~ S n U~ and s < t ,  assigned in (iii). 

Now assume that M ~q~ and let the gt and the ha, t satisfying the required 

conditions be given. We will show how to obtain from the gt and the h~.t a family 

of functions {ft}t ~ r ,  such that each ft is a function of the xs where s < t ,  and, 

for every assignment a in which t r ( x t )=  f t (""  tr(xs)"")s<t and which coincides 

with z on the other variables, we have M ~,~.  This will show that M ~ W ~  Q~. 

Consider all the indexed sets of  members of M which are either of the form 

{as}s<,, where t s T, or of the form {as} s ~ s. Any member can appear more than 

once, and the indexed set should be vuisalized as ordered according to the ordering 

of  the indices in U. Thus, each has an order-type which is coinitial with e*. 

Say that two such indexed sets a and b are equivalent if, for some u e U, as and 

bs are both defined and equal for all s < u.  The relation is easily seen to be an 

equivalence relation. Since each {as}s< , is equivalent to {as}' s ~s, where a~ = a, 

for s < t and a's is arbitrary otherwise, it follows that every equivalence class 

has a member of the form {as}s ~ s. For each equivalence class E let ~b(E) be a 

representative of  the form {as}s ~s. 

Now let {as}s<t be given and define f~(..-a~..-) as follows. Let {b~}s ~s be 

~b(E) where E is the equivalence class of {as}s<t. There are now two cases: 

(i) For  all s < t we have a s = b~, then defineft(.. ,  as...)s< t as gt("" b s " ' ) s ~ s .  

(ii) For  some s < t we have a s ~ b s. There is an ordinal fl such that as = bs 

for all s e S - Ua. Let 6 be the minimal ~ having this property. For every t t e  T -  U~ 

let a,~ =gt(""  bs "")s ~ s. Define ft("" as "") to be h~.t(.., at~ ... a s "" ) t~r-v .~s<t ,  that 

is, the value of h6. t for the case in which xt, ,  for t 1 E T -  Uo, is assigned the value 



Vol. 8, 1 9 7 0  NON-HOMOGENEOUS STRINGS 79 

gtl ( " "  bs " " ) s~s ' ,  and each xs, where s < t ,  is assigned the value as. 

Let {as}s ~ s be given. Put  at = ft("" as '")s<t .  We have to show that qb holds 

for the assignment tr such that a(xu) = au, u ~ U.  Let E be the equivalence class 

of  {as} s~s  and let {b,}s ~s = ~b(E). If, for all s ~ S ,  as = bs, them we have 

at = gt("" a s" ' ) s  ~ s for all t 6 T. Hence, in ths case, • holds because the assign- 

ment tr is obtained according to (I)-(IV) for the case ~ = 0. (Note that Uo = 0, 

hence for ~ = 0 there are no functions h~,t.) In the general case there will be s 

that a~ ~ b~. Let ~ be the smallest ordinal fl such that a~ = bs for all s e S - Up. 

The assignment a is obtained according to (I)-(IV) as follows: First assign to 

each x~, s E S the value bs. In the second step assign to each xt, where t e T - U~, 

the value which is determined by the function gt, i.e. gt("" bs ' " )s  ~ s.  This value 

is exactly ft("" as".)~<t.  This is so because, for t ~ T - Uo, we have a, = bs 

for all s < t ,  and since {as}s ~ s,~<t and {as}s ~ s ,  are equivalent, clause (i) of  the 

definition will yield: ft("" a~ ""),<t = gt("" b~ "")s ~ s.  

In the third step replace every bs where s E S c3 U~ by a~, and in the last step 

assign to xt,  where t ~ T (3 Ut,  the value determined by h~.t, i.e. 

ha,t("" a , ' "  a s ' " ) ,  ~T-V,,s<t. 

This, as it is easy to see, is, by clause (ii) of  the definition, equal to Jr("" as "-)~<,. 

This concludes the proof  in one direction. 

The other direction, namely that Oq~ implies W is easy and is left to the reader. 
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